
Reading, Writing, and Format
String Attacks

Daniel Chen

Video from Live Overflow: (4:20 - 7:33)

http://www.youtube.com/watch?v=akCce7vSSfw

Objectives in exploit development
● Leak out memory - Reading

○ View decision making points

○ Values

○ Addresses

● Control execution flow - Writing

○ Change decision making points

○ Global Offset Table

○ Function pointers

○ Return addresses

● Hence why arbitrary reads and writes are very powerful!

Case study: Heartbleed
● Missing input validation check on

the length of the heartbeat TLS

response

● Result: Leaking of sensitive data,

passwords, cookies, etc from

memory

Ways to get the arbitrary read/write
● Use after free

● Double free

● Improper dynamic memory allocation/Heap grooming

● Format string attacks

○ What we will be focusing on today

Binary Security

Stack Canaries?
● Little to no impact against arbitrary

reads/writes

○ Only useful against attacks that will corrupt a large

amount of the stack memory (e.g. buffer overflows)

Position Independent Executable (PIE)
● Randomizes the addresses of the .data and .text sections

○ All the function locations and global variable addresses are randomized!

● Makes it infeasible to pinpoint where to write, or what to leak.

● Enabled by default, use the -no-pie option on gcc to disable

Relocation Read-Only (RELRO)
● Changes the Global Offset Table permissions

● Partial Relocation Read-only:

○ Prevents buffer overflows on global variables from overwriting the Global Offset Table

○ Little to no effect on arbitrary read/write attacks

○ Enabled by default

● Full Relocation Read-only:

○ Makes the Global Offset Table read-only, thereby preventing GOT overwrite attacks.

○ Increase program startup time

○ Disabled by default, to enable, add -W1,-z,relro,-z,now to gcc during program compilation

Address Space Layout Randomization (ASLR)
● Randomizes the addresses of library functions, heap addresses, and stack

addresses.

● Enabled by default as a kernel setting

● HOWEVER: While the addresses are randomized, the offsets between the

addresses remain constant.

○ Within a given C library, the distance between &printf() and %system() is the same!

○ Hence, if you leak a single C library function address, you can calculate the address of all other C

library function addresses!

Format string parameter overview:
● Used as a placeholder that translates parameters to values

● %[parameter][width][length]type

○ Type: Output format

■ %x

○ Parameter: Specify which parameter to print

■ %5$x

○ Width: Specify minimum characters to print out

■ %10x

○ Length: Specify the size of the parameter to print out

■ %hhx

● Used in I/O functions within many programming languages.

Format string parameter overview:
● Parameters:

○ “d$”

■ Where d is the position of the

parameter to print out (in decimal)

● Length:

○ “” - Prints out a 4 byte value

○ “h” - Prints out a 2 byte value

○ “hh” - Prints out a byte value

○ “ll” - Prints out a 8 byte value

● Width:

○ “d”

■ Where d is the number of bytes to

print out (in decimal)

● Type:

○ “x” - Prints in hex format

○ “d” - Prints in signed decimal format

○ “u” - Prints in unsigned decimal format

○ “s” - Prints out a null-terminated string

representation of a POINTER

● Special type: “n”

○ Does not print anything out, but writes the

number of characters successfully printed so

far into the location of the next parameter.

○ The parameter and length attributes affect

this type.

Overview: Global Offset Table
● Table of addresses stored in the .data section

○ Includes pointers to C library functions!

● Used in dynamically linked binaries where

global addresses are unknown until runtime

● The Procedure Linking Table provides

assembly code that tells the program to jump

to the address stored in the Global Offset

Table

Demo time!

Your turn!
● Before we begin:

○ All challenges use 32-bit binaries, so take that into account when counting parameters!

○ All challenges are running on an Ubuntu 18.04 server

○ All challenges have the PIE security setting disabled.

○ Other security settings are left as default.

○ For format7, the designated memory region is readable, writable, and executable.

● Reminders:

○ All flags are in flag{XXXXXXXXXXXXX} format.

○ Linux binary memory are little endian, so take that into account when reading/writing data!

○ printf() stops when it reaches a null byte

○ The max value for a variable depends on its type, if you go past it, you will get the min value for its

type! This applies to format strings! (especially the length attribute)

Connect to: nc 128.143.67.98 <port_number>
● Format0: port 30000

○ Can you read me?

● Format1: port 30001

○ Guess my numbers! The C library’s rand()

function is very secure!

● Format2: port 30002

○ Time to do some writing!

● Format3: port 30003

○ Learning how to write, part 2

● Format4: port 30004

○ Aim carefully and overflow!

● Format5: port 30005

○ Implement a Global Offset Table overwrite

attack!

● Format6: port 30006

○ How fast can you overwrite the GOT?

● Format7: port 30007

○ Shellcode time!

References
https://en.wikipedia.org/wiki/Heartbleed

https://www.youtube.com/watch?v=akCce7vSSfw

https://medium.com/@HockeyInJune/relro-relocation-read-only-c8d0933faef3

https://ctf101.org/

https://en.wikipedia.org/wiki/Heartbleed
https://www.youtube.com/watch?v=akCce7vSSfw
https://medium.com/@HockeyInJune/relro-relocation-read-only-c8d0933faef3
https://ctf101.org/

