
Binary Exploitation

Jake Smith and Mariah Kenny
University of Virginia

Assembly

Credit: Most slides taken from Collin Berman and Cyrus Malekpour’s
Modern Security Topics class at UVA in Spring 2017

Basics

• Lowest level programming

language

• Step by step instructions for

CPU

• Results of compiled program

• Types: Intel and AT&T

(Data Movement) Instructions

Credit: Modern Security Topics, Spring 2017 at UVA

Levels of Abstraction

Registers
● EAX, EBX, ECX, EDX

○ Common general purpose registers

● ESP
○ Points to the “top” of the current stack frame

● EBP
○ Stack base pointer, points to the “bottom” of the

current stack frame

● EIP
○ Points to the location of the current instruction in

memory

● EFLAGS
○ Contains flag bits (zero flag, carry flag, sign flag, etc)

Credit: Modern Security Topics, Spring 2017 at UVA

Registers

(Arithmetic) Instructions

Credit: Modern Security Topics, Spring 2017 at UVA

(Control Flow) Instructions

Credit: Modern Security Topics, Spring 2017 at UVA

Credit: Modern Security Topics, Spring 2017 at UVA

Your First Program
Run: gcc -m32 -o simple simple.s
#compiles program

Run: ./simple
1
#runs program

Credit: Modern Security Topics, Spring 2017 at UVA

Your Second Program
Run: gcc -m32 -o arg arg.s
#compiles program

Run: ./arg stuff
stuff
#runs program

Credit: Modern Security Topics, Spring 2017 at UVA

Basic Binary
Analysis

file
• Looks at “magic bytes” - first few bytes of file
• Compares byte sequence to see what type of file it is
• ELF = Executable and Linking Format
• Executable/ELF file:

○ Magic: 7f 45 4c 46 02 01 01 00 00 00 00 00 00
00 00 00

• Syntax: file <filename>

file: CTF Problem

• Run file on crackme1
• What information can we deduce about the

program?

strings

• Outputs all strings in the program
• Useful to see what you can deduce about

program / its contents
• Syntax: strings <filename>

strings: CTF Problem

• You are given the executable: crackme1
• Use strings to find out what the flag probably is.

objdump

• Outputs information from “object files”
• objdump -d: prints disassembly of program
• objdump -t: Prints out symbol table (headers,

function names, etc)
• Example Syntax: objdump -d <filename>

objdump: CTF Problem

• Run objdump -d and objdump -t on game
• What are some interesting function calls?
• What can we infer from these?

GDB

Basics
• Command-line debugger
• Specifically the GNU debugger

○ “GNU” is the compiler framework that contains
a lot of things including the debugger gdb

• It allows you to see what is going on ‘inside’ the
program while it executes

Basics
• Allows us to control the execution of the program
• Ability to pause, resume, determine the values of

variables, reset variable values, etc.
• If the program crashes, the debugger can tell you

exactly where the program crashed

Commands

• To open a file in gdb: gdb <filename>
• Once in gdb, to run the program: run or r
• To see current and surrounding lines: list
• To see list of function calls that led to current point

in program: backtrace or bt (important command!)

Frames

• To move to a higher frame: up
• To move down a frame: down
• ^these let you move up and down the calling stack

(of nested function calls)

Breakpoints
• Pausing the program at a specific place (specific

line or start of a function)
• These locations in a program where execution

pauses are called “breakpoints”
• You must use code that executes, cannot be a

comment, etc.

Breakpoints

• break or b followed by what you want to pause
○ function name: b my_function
○ Line number: b 13

• To see info about breakpoints: info breakpoints or
info break

Breakpoints

• To remove a breakpoint: delete or d
• To remove a specific breakpoint: d 2 or d my_func
• Temp breakpoint: tbreak

Controlling Execution
• Execute line by line
• step command steps into a function; moves into

called function (s)
• next command passes over the function call and

brings you to the line after the function call (n)
• continue command resumes execution until next

breakpoint (c)

Variables

• To see the value of a variable or expression: print or
p followed by variable name

• If var is a pointer or address: print *<var> which
will print the value that the address references

• To see all args and local variables: info locals

Display

• To auto display variable values: display <var>
• If see all variables on display: display
• To remove a variable from display: undisplay

<display var #>

GDB PEDA

• Python Exploit Development Assistance for GDB
(more colorful and helpful)

• To download:
○ git clone https://github.com/longld/peda.git ~/peda
○ echo “source ~/peda/peda.py” >> ~/.gdbinit

https://github.com/longld/peda.git

Practice
• Goal: find the flag
• Open program in gdb: gdb animal1.exe
• Set breakpoints at main or any interesting

functions (b main, etc) or use disas main
• Run program (run)
• Use step (s) and next (n) to move through program

Questions?

